Exercise 32

For the following exercises, solve the equations over the complex numbers.

$$
x^{2}+8 x+25=0
$$

Solution

The two terms with x, x^{2} and $8 x$, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=8$, which means $B=4$ and $B^{2}=16$. Add and subtract 16 from the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}+8 x+16\right)+25-16=0 \\
(x+4)^{2}+9=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract 9 from both sides.

$$
(x+4)^{2}=-9
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{(x+4)^{2}} & =\sqrt{-9} \\
& =\sqrt{9(-1)} \\
& =\sqrt{9} \sqrt{-1} \\
& =3 i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x+4$.

$$
|x+4|=3 i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x+4= \pm 3 i
$$

Subtract 4 from both sides.

$$
x=-4 \pm 3 i
$$

Therefore, $x=\{-4-3 i,-4+3 i\}$.

